Itchy Nose: Discreet Gesture Interaction
using EOG Sensors in Smart Eyewear
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ABSTRACT

We propose a sensing technique for detecting finger move-
ments on the nose, using EOG sensors embedded in the frame
of a pair of eyeglasses. Eyeglasses wearers can use their fin-
gers to exert different types of movement on the nose, such
as flicking, pushing or rubbing. These subtle gestures can be
used to control a wearable computer without calling attention
to the user in public. We present two user studies where we
test recognition accuracy for these movements.
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INTRODUCTION

Smart eyewear such as Google Glass, Snap’s Spectacles, JIns
Meme and Microsoft HoloLens are becoming available. Yet
interacting with these devices often requires actions such as
swiping on the side of the device or finger tapping in mid-air.
These actions may be considered disruptive, intrusive or so-
cially unacceptable (i.e., distracting or rude) when socializing
with others or during workplace interactions.

Some researchers advocate creating interactions where the
use of the technology is obvious and self-explanatory to on-
lookers [6, 8]. Others seek to create interactions that are more
subtle due to concerns of safety, awkwardness, or possible
misinterpretation depending on the context of use [11, 17].
This research seeks to create control gestures which can be
interpreted as typical nose touching movements. We focus
on social situations such as meetings where the user’s wear-
able presents a notification, either through audio alerts or a
head worn display, and the user would like to select one of
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Figure 1: Three proposed input gestures.

a few options to respond to the notification without distract-
ing others in the room. We propose sensing based on elec-
trooculography (EOG) sensors embedded in the J!ns Meme,
a commercially available wearable computer that detects eye
and head movements. Our technique allows the detection of
finger flicking, pushing and rubbing on the nose. These ac-
tions can be easily disguised as scratching or rubbing one’s
nose. Health studies show these actions to be commonplace,
with mouth/nose touches averaging 3.6 per hour [1].

RELATED WORK

Our work touches on several areas including EOG sensing
and on-body interaction, especially on the face and nose area.
The custom EOG goggles proposed by Bulling et al. [5] can
efficiently recognize sequences of eye movements in real-
time for interaction purposes. Using commercially available
EOG glasses (J!ns Meme), Ishimaru et al. [10] identify four
types of activities (typing, reading, eating and talking) at
roughly 70% accuracy. Instead of eyewear, Manabe et al.
attached EOG sensors to over-ear headphones [14] and in-ear
earphones [15] to detect eye gestures for input and interac-
tion. To our knowledge, using EOG to detect finger touching
on the nose has been an unexplored area.

There are various works on detecting finger tapping on the
body using acoustic sensing, such as the SkinPut [9] which
determines the location of a finger tap by analyzing the sound
that propagates through the skin. TapSkin [21] is able to
achieve similar tapping detecting on the arm by using just
the accelerometer and microphone in an off-the-shelf smart-
watch. Bragi Dash [4] is a pair of consumer earphones that
supports a simple tapping gesture on the face. However, these
techniques rely on rather strong tapping, which would not be
practical for the nose.



Serrano et al. [18] explore using hand to face input to inter-
act with head-worn displays (HWDs). Due to its exploratory
nature, their prototype uses a Vicon optical tracking system
with infrared markers attached on users’ fingers. FaceTouch
[7] leverages touch-pads on the outer side of HMD for in-
teraction with virtual content. Finally, Earput [13] explores
touch interaction on the ear by placing electrodes around ear.

Instead of touching the face or ear, Stick it in your ear [3]
explores using jaw movement for interaction purposes by us-
ing in-ear sensors. Similarly, Bitey [2] explores tooth click
gestures for hands-free interface control. Palebrea Superi-
oris [12] explores the design space of eyelid gestures. These
works suggest that the human face can provide a rich medium
for interaction with computing.

In terms of nose interaction, people occasionally use their
nose to tap the screen of a phone (e.g., to replace finger or
stylus), especially when the hand is covered with a glove
(during winter) or the phone is too big for one-handed usage
and the non-supporting hand is occupied. The Wall Street
Journal [19] reports that people also use their nose to inter-
act with smartwatches when their hands are occupied. Most
related work focuses on this idea of using the nose to inter-
act with a touchscreen, while our work focuses on detecting
the finger gesturing on the nose itself. Snout [20] explores
one-handed use of touch devices using the nose, and Nose-
Tapping [16] presents an in-depth user study, identifying the
main challenges and contributing to the design principles for
nose-based interaction.

Figure 2: J!'ns Meme and its EOG electrode placement.

DESIGN AND IMPLEMENTATION

The EOG sensors in the JIns Meme are strategically placed
around the nose: two on the nose pads and one on the nose
bridge (Figure 2). We exploit these sensors to detect nose
movement when it is being touched by a finger. We stream
raw data from the J!ins Meme over Bluetooth to a remote
computer for real-time processing and classification. We im-
plemented the system in Python with Pygame for visualiza-
tion and Scikit-learn for training machine learning classifiers.
While our first intention was to use the nose as a joystick, we
currently only support gestures that we can detect robustly: 1)
flick left/right ii) push left/right and iii) rubbing (Figure 1).

First we develop a simple heuristic-based system to perform a
first-pass at real-time recognition during data collection. Our
signal processing pipeline segments the data into one second
windows. We run classification every 30ms. We perform two
classifications on the data; one for classifying whether input
has occurred and the other for classifying the type of input
(e.g., flick, push or rubbing). We use 5 signals from the J!ns
Meme: EOG left, right, horizontal, vertical, and the z-axis
of gyroscope. Example signals during each of the 5 gestures
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Figure 3: Example of signal patterns in both conditions.

can be seen in Figure 3. Note that the each channel of the
EOG signals is derived from combinations of three EOG elec-
trodes. We use the z-axis gyroscope as it can detect the small
head rotation movement that occurs during a rubbing gesture.
We extract 10 features for each signal, including 5 statisti-
cal features: (i) root mean square, (ii) mean, (iii) standard
deviation, (iv) maximum and (v) minimum value of the seg-
mented signal. The other 5 features include the number of
(vi) positive and (vii) negative peak values (which are high
on flick and rub), the numbers of values to cross a (viii) pos-
itive threshold and (ix) negative threshold and (x) the largest
number of values that exceed these thresholds consecutively.

EXPERIMENT 1: SEATED

We imagine Itchy Nose interactions will be most useful for a
user responding to notifications while attending meetings or
other seated, face-to-face interactions. Thus, we first focus
on collecting data while users are in a seated position. We
recruited seven volunteers from a local university, including
students and researchers, aged between 24 and 30 (M:26.9,
SD:1.9). We asked the participants to sit on a chair and watch
the display while wearing J!ns Meme. We demonstrate the
5 gestures (flick, push and rub) and allow the participants to
experiment with our classifier running in real-time. At this
stage, the classifier was based on simple heuristics. During
the experiment, the display prompts the user with a random
gesture and counts down three seconds before the data collec-
tion starts. We ask the participants to perform the gesture re-
peatedly with one second pauses between each iteration until
the gesture is successfully recognized by the system, whereas
unsuccessful recognition was confirmed manually by the ex-
perimenter. Each successful gesture was collected 10 times,
resulting in 50 successful trials for the 5 gestures.

Results

As expected, we could not obtain satisfactory accuracy using
our simple heuristic approach. Only 62% of attempts could be
detected on the first trial, as shown on Table 1. We then used
the collected data for post-hoc evaluation, training and evalu-
ating a random decision forest (RDF) classifier. We train and



Participant . Number of tria315 until schess =
I 12 8 0 0 0
2 33 10 4 I 2
3 31 15 4 0 0
4 31 7 2 4 6
5 27 9 7 4 3
6 31 15 3 0 1
7 21 12 6 5 6
Total 217(62%) 78(22%) 29(8%) 18(5%)  18(5%)

Table 1: Number of trials per participant for seated gestures
using heuristic approach.
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Table 2: Random forest classifier results for seated gestures
in user dependent (UD) and user independent (UI) tests.

test the gestures in isolation. All of the gestures triggered in
the real-time data collection are used, including the gestures
mis-recognized by the heuristic recognizer. The first second
of each gesture was segmented manually, and the RDF recog-
nizer makes a forced choice decision on this window of data.

To explore the difficulty of the recognition task, we test our
system for user dependent, user independent, and user adap-
tive situations, always maintaining independent training and
test sets. For user dependent tests, we run 5-fold cross-
validation using just the data produced by one person. For
user independent tests, we use leave-one-user-out evaluation
(train with n-1 users and test on the remaining user). For user
adaptive tests, we simulate the situation where we have cre-
ated a user independent classifier and that we collect data for
a new user to personalize the models for them. For now, we
are interested in the best performance possible in this situa-
tion, so we assume all the data collected for a given user is
available to us (minus the test set). We use 10-fold cross-
validation over all the users’ data to approximate the user
adaptive situation. The average accuracies are 96.1% (STD
5%) user dependent, 93.2% (STD 8%) user independent,
and 95.8% (STD 4%) user adaptive. Confusion matrices
for the user dependent and user independent tests are shown
in Table 2.

All tests have relatively high accuracy, which provides some
confidence that the recognition problem is manageable. How-
ever, both push gestures have relatively poor accuracy in user
independent testing. Eliminating these two gestures would
raise system accuracy significantly. Alternatively, perhaps
users new to the Itchy Nose system could be asked to pro-
vide some push gestures for calibration, thereby increasing
accuracies to an acceptable level. Encouraged by the results,
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Table 3: User dependent (UD) and user independent (UI) re-
sults for walking conditions in Experiment 2.

we attempt another experiment assuming a more difficult sce-
nario: user input while walking.

EXPERIMENT 2: WALKING

We recruited six participants from the same local university
as the previous experiment, aged between 26 and 32 (M:27.8,
SD:2.6). Participants were prompted to perform gestures
while walking on a track created in the lab. Unlike the first
experiment, no real-time feedback was provided and gestures
were attempted only once for each trial. The five gestures
were presented five times in random order for a total of 25
gestures per session. Each participant performed two ses-
sions, resulting in 10 examples of each gesture per partici-
pant.

Results

We tested the collected data in the same manner as exper-
iment 1. Average accuracies in the walking condition are
94.3% (STD 5) user dependent, 85.0% (STD 14) user adap-
tive, and 77.7% (STD 14) user independent.

User dependent accuracy is high, comparable to the seated
experiment. However, the accuracy difference between the
user dependent and user independent tests is much larger than
seated condition. This result suggests that walking creates
more variance in how the gestures are performed. The ac-
curacies of the five gestures in user adaptive testing were
81.7% left flick, 73.3% left push, 86.7% right flick, 83.3%
right push, and 96.7% rubbing, further supporting the idea
that walking increases variability in how the gestures are per-
formed. As with the seated condition, push gestures tend to
be less well recognized than flick and rub throughout all test-
ing. Interestingly, rub improves the most between user in-
dependent and user adaptive testing while walking. In fact,
rubbing maintains approximately 97% accuracy across most
conditions tested.

DISCUSSION, LIMITATIONS AND FUTURE WORK

The results suggest that the five gestures can be distinguished
well when the user is walking. The second experiment sug-
gests that some users may have to train the system in order
to get sufficiently high recognition rates for a good user ex-
perience. More experimentation with features and the vari-
ability between subjects is needed to reduce the error rate
while walking. However, one could imagine smart eyewear
where the Itchy Nose interface is only enabled when the user



is relatively still (as measured by an embedded gyroscope).
This approach may be more reasonable than it first appears.
While on-the-go a user may be less concerned with how using
the interface is perceived and be willing to use a head worn
touchpad or other interface. The Itchy Nose interface may be
reserved for those times the user is in face-to-face meetings,
which are generally held while seated or standing.

Eliminating the push gestures would improve recognition
rates while still allowing enough gestures to select between
three options when responding to a notification. Rubbing is
the best recognized gesture, and we are currently pursuing ex-
periments which suggest that continuously monitoring for the
rubbing gesture would have few false positives per hour while
retaining a high recognition rate, even while walking. Thus,
the rubbing gesture might be used to initiate an interaction
with the wearable, whereas left and right flicks and pushes
might be used to navigate an interface. This set of five ges-
tures would be sufficient to control many wearable interfaces,
such as the timeline-based interface of Google Glass.

The EOG sensor in the JIns Meme was originally designed for
detecting eye movements, but here we re-purpose it to detect
finger gesturing on the nose. One worry is that eye movement
will cause false positives. However, we are finding that the
nose gestures have a much higher EOG signal magnitude than
eye movements, and a simple threshold is sufficient to avoid
false triggering.

Originally, we struggled to detect vertical gestures (flick and
push up/down) with satisfactory accuracy. If this limitation
can be overcome, the input can be more powerful, essentially
transforming the nose into a joystick controller. It could then
also support more directions and gestures (circling).

In the future, we seek to test the social acceptability and no-
ticeability of various gestures, the influence of fit and nose
shape on recognition rates, nose fatigue, and cleanliness is-
sues. We also expect to collect more training data and test
the recognition system in-the-wild, where we will have par-
ticipants wear a live recognition system the entire day and
prompt them using SMS to attempt various gestures at ran-
dom intervals.

CONCLUSION

Itchy Nose uses finger movements on the nose to command a
wearable computer. With recognition accuracies in the mid-
90% range, Itchy Nose may allow users to respond to notifi-
cations quickly without distracting nearby colleagues.
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